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Abstract—This paper introduces genetic algorithms (GA) as a
complete enlity, in which knowledge of this emerging technology
can be integrated together to form the framework of a design tool
for industrial engincers. An attempt has also been made to explain
“why" and “when” GA should be used as an optimization tool.

1. INTRODUCTION

HE USE of genetic algorithms (GA) for problem solving
Tis not new. The pioneering work of J. H. Holland
in the 1970°s proved to be a significant contribution for
scientific and engineering applications. Since then, the output
of rescarch work in this field has grown exponentially although
the contributions have been, and are largely initiated, from
academic institutions world-wide. It is only very recently
that we have been able to acquire some material that comes
from indusiry. The concept of this is somehow not clearly
understood. However, the obvious obstacle that may drve
enginecrs away from using GA is the difficulty of speeding
up the computational process, as well as the intrinsic naturc of
randomness that leads 10 a problem of performance assurance.

Nevertheless, GA development has now reached a stage of
maturity, thanks to the cffort made in the last few years by
academics and engineers all over the world. It has blossomed
rapidly due to the casy availability of low-cost but fast-
speed small computers. Those problems once considered o
be “hard™ or even “impossible.” in the past are no longer
a problem as far as computation is concerned. ‘Therefore.
complex and conflicling problems that require simultaneous
solutions, which in the past were considered deadlocked
problems, can now be obtained with GA.

Furthermore, the GA is not considered a mathematically
guided algorithm. The optima obtained is evolved from gener-
ation to generation without stringent mathematical formulation
such as the traditional gradient-type of optimizing procedure.
In fact, GA is much different in that context. Il is merely a
stochastic, discrete event and a nonlinear process. The obtained
optima is an end product containing the best elements of pre-
vious genecrations where the attributes of a stronger individual
tend to be carried forward into the following generation. The
rule of the game is “survival of the fittest will win.”

In this sphere, there is an endless supply of literature
describing the use of GA. The sheer number of references
quoted in this paper is an apt indicator of the extensive work
being done in this domain. This does not include the index
finding from [1]. The technical knowledge of “what”™ GA is and
“how™ it works are well reported. This paper tries not to cover
the same ground. Rather, there is room for the introduction of
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GA as a complete entity, in which knowledge of this emerging
technology can be integrated together to form the framework
of a design tool for industrial engineers. Moreover, a brave
attemnpt has also been made to explain “why” and “when” we
should use GA as an optimization tool. It is anticipated that
there is sufficient materials being gencerated in this paper to
support this claim.

This paper starts by giving a simple example of GA, as
described in Section TI, in which the basic framework of
GA is outlined. This example forms the cornerstone to the
architecture of this paper. For the benefit of newcomers to this
particular ficld, the essential schema theory and building block
hypothesis of genetic algorithms are bricfly given in Section
(1. What makes GA work and how doces it improve its evolu-
tion arc Lhe essence of GA. There are a number of variations
used to achieve these tasks, and each task has its own merit,
In Section IV, a range of structural modifications for GA in
order to improve its performance are thus recommended.

Since so much has alrcady been published about what can be
done with GA, a short list of items cataloguing the advantages
of using GA is given in Section V. In Section V1. an account
of what GA “cannot do” is given. The well-known phenomena
of deceplion and genetic drift are described. In addition, the
problems concerning the real time and adaptiveness of GA
arc also reported.

As this paper is largeted al a specific audicnce, the collection
of practical systems being implemented are ntroduced in
Scction VII, whereas Section VIIT outlines the possibility of
integrating GA into cmerging technologics such as neural
networks and fuzzy systems. Finally, the conclusions reached
in Section XI and recommendations for fumre works are also
given.

II. Basic CONCEPTS OF GENETIC ALGORITHMS

The basic principles of GA were first proposed by Holland
[66]. Therealter, a series of literature [33], [52]. [89] and
reports [10]. [11). [102]. [118] became available. GA is
inspired by the mechanism of natural selection, a biological
process in which stronger individuals are likely be the winners
in a competing environment. Here, GA uses a direct analogy of
such natural evolution, Tt presumes that the potential solution
of a problem is an individual and can be represented by a
set of parameters. These paramelers are regarded as the genes
of a chromosome and can be structured by a string of values
in binary form. A positive value, generally known as fitness
value, is used to reflect the degree of “goodness” of the
chromosome for solving the problem. and this value is closely
related to its objective value.

0278-0046/96305.00 © 1996 IEEE

MAN er al.: GENETIC ALGORITHMS: CONCEPTS AND APPLICATIONS

[71] C. Z. Janikow and Z. Michalewicz, “An experimental comparison of
binary and floating point representations in genetic algorithms,” in Proc.
dth Int. Conf. Genetic Algorithms. July 1991, pp. 31-36.

[72] A. H. Jones and P. B. De Moura Oliveira, "Genetic auto-tuning of PID
controllers,” in [st IEE/IEEE Int. Conf. GA's in Engineering Systems:
Innovations and Applications, Sheffield, UK., 1995, pp. 141-145.

{73] C. L. Karr, “Genetic algorithms for fuzzy controllers,” Al Expert, vol
6, no. 2, pp. 26-33, 1991.

[74] C. L. Karr and E. ). Gentry, “Fuzzy control of pH using gemetic
algorithms,” JEEE Trans. Fuzzy Syst., vol. 1, pp. 46-53, 1993

(751 A. J. Kaiz and P. R. Thrift, “Genecrating image filters for target
recognition by genetic learning,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 16, pp. 906-910, Sept. 1994.

[76] Lj. Kocarev, K. S. Halle, K. Eckert, U, Parlitz, and L. O. Chua,
“Experimental demonstration of secure communications via chaos syn-
chronization,” Int. J. Bifurcation, Chaos, vol. 2, no. 3, pp. 709-713,
1992,

{77] ). Koza, “Evolution and co-cvolution of computer programs to control
independently-acting agents,” in Animals to Amimals, J. A. Incger and
S. W. Willson, Eds. Cambndge, MA: MIT Press/Bradford Books,
1991.

78] B. Kroger, P. Schwenderling, and O. Vomberger, “Parallel genetic
packing on transputers,” in Parallel Genetic Algorithms: Theory and
Applications. Amsterdam: 10S Press, 1993, pp. 151185

(791 S. Kwong, A. C. L. Ng. and K. F. Man, “Improving local search in
genctic algorithms for numerical global optimization using modified
GRID-point scarch technique,” in /st IEE/JEEE Int. Conf. on GA’s
in Engineering Sysiems: Innovations and Applications, Sheffield, UK.,
1995, pp. 419-423,

[80) W B.  Langdon (1995) Scheduling  Planned  Mainte-
nance of the (UK) Narional Grid. [Online]. Available
cs.uclac.uk/genetic/papers/grid\_aisb-95.ps.

[81] G. Mackle, D. A. Savic, and G. A. Walters, “Application of genetic
algorithms to pump scheduling for water supply.” in /st IEE/IEEE Int
Conf. on GA's in Engineering Systems: Innovations and Applications,
Sheffield, U.K,, 1995, pp. 400-405

[82] S. W. Mahfoud, “Crowding and preselection revisited,” Dept. Comput
Sci., Univ, lllinois at Urbana-Champaign, IIKGAL Rep. 92004, Apr.
1992

183) ———, “Population sizing for sharing methods,” Dept. Comput. Sci.,
Univ. lllinois at Urbana-Champaign, IIIGAL Rep. 94005, Aug. 1994

[84] K. L.Mak and Y. S. Wong, “Design of integrated production-inventory
distribution systems using genetic algorithm.” in /st IEE/IEEE Im.
Conf. on GA's in Engineering Systems: Innovations and Applications,
Sheffield, UK., 1995, pp. 454 460.

|85] B. Manderick and P. Spiessens, “Finc-grained parallel genetic algo-
rithms,” in Proc. 3rd Int. Conf. Genetic Algorithms, 1989, pp. 428433

[86] V. Maniezzo, “Genetic evolution of the topology and weight disinbution
of neural networks,” IEEE Trans. Neural Networks, vol. §, pp. 39-53,
Jan, 1994,

[87] MATLAB User's Guide. The MathWorks, 1991

[88] D. McFarlane and K. Glover, “Robust conuoller design using nor-
malized coprime factor plant descriptions.” in Information and Control
Sciences.  Berlin: Springer-Verlag, 1990.

[89) Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Program, 2nd Ed. Berlin: Springer-Verlag, 1994

[90] N. H. Moin, A. S. I. Zinober, and P. J. Harlcy, “Sliding mode control
design using genetic algorithms,” in st JEEAEEE Int. Conf. GA's in
Engineering Systems: Innovations and Applications, Shefficld, UK.,
1995, pp. 238-244,

[91] H. Muhlenbein, “Parallel genetic algorithms, population genetics,
and combinatorial optimization,” in Parallelism. Learning. Evolution.
Berlin: Springer-Verlag, 1989, pp. 398-406

[92] R. Nakano, “Conventional genetic algorithms for job-shop problems,”
in Proc. dth Ini. Conf. Genetic Algorithms, 1991, pp. 474479,

[93] R. Nambiar and P. Mars, “Adaptive lIR fillering using natural al-
gorithms,” in Workshop on Natural Algorithms in Signal Processing,
Chelmsford, Essex, Nov. 1993, pp. 20/1-20/10.

[94] S. Obayashi, “Genetic algorithm for acrodynamic inverse optimization
problems,” in Ist JEF/IEEE Int. Conf. GA's in Engineering Systems:
Innovations and Applications, Sheffield, U.K,, 1995, pp. 7-12

[95] D. Park, A. Kandel, and G. Langholz, “Genetic-based new fuzzy
reasoning models with application to fuzzy conwol.” JEEE Trans. Sysi.,
Man, Cybern., vol, 24, pp. 3947, 1994

{96] G. Roth and M. D. Levine, “Geometric pnimitive extraction using a
genetic algorithm,” IEEE Trans. Pattern Anal. Machine Intell,, vol. 16,
pp. 901-905, Sept. 1994,

[97] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of genctic
algorithms and neural networks: A survey of the state of the art.” in Proc.
COGANN-92 In1. Workshops on Combination of Genetic Algorithms and
Neural Networks, Baltimore, MD, June 6, 1992,

533

[98] V. Schnecke and O. Vornberger, “Genetic design of VLSI-layouts,” in
Ist IEE/IEEE Int. Conf. GA's in Engineering Systems: Innovations and
Applications, Sheffield, UK., 1995, pp. 430-435.

[99) K. G. Shin and P. Ramanathan, “Real-time computing: A new discipline
of computer science and engincering,” in Proc. IEEE, vol. 82, no. |,
Jan. 1994,

[100] J. ). Shynk, “Adaptive IIR filtering,” /EEE ASSP Mag.. pp. 4-21, Apr.
1989

[101] W. M. Spears and K. DeJong, “An analysis of multi-point crossover,”
in Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. 1991, pp.
301-315.

[102] M. Srinivas and L. M. Patnaik. “Genetic algorithms: A survey,” Com-
puter, pp. 17-26, Junc 1994

[103] K. Suzuki and Y. Kakazu, “An approach 1o the analysis of the basins of
the associative memory model using genetic algorithms,” in Proc. 4th
Int. Conf. Genetic Algorithms, 1991, pp. 539546,

[104] G. Syswerda, “Uniform crossover in genetic algorithms,” in Proc. 3nd
Int. Conf. Genetic Algorithms, 1989, pp. 2-9.

[105] .. “Schedule optimization using genetic algonthms,” in Handbook
of Genetic Algorithms, pp. 332-349, 1991,

[106] H. Tamaki and Y. Nichikawa, “A paralleled genetic algorithm based
on a neighborhood model and its application to job shop scheduling,”
Parallel Problem Solving from Nature, 2, pp. 573582, 1992.

[107) K. S. Tang, K. F. Man, and C. Y. Chan, “Fuzzy control of water pressure
using genetic algorithm,” in Proc. IFAC Workshop on Safety, Reliability,
and Applications of Emerging Intelligent Control Technologies, Hong
Kong, Dec. 1994, pp. 15-20.

(108) K. S. Tang. K. F. Man, and S. Kwong, “GA approach to time-variant
delay estimation,” in Int. Conf. Control, Information, Hong Kong, June
5-9, 1995.

[109] K. S. Tang, C. Y. Chan, K. F. Man, and S. Kwong, “Genetic structure
for nn topology and weights optimization,” in /st JEE/IEEE Int, Conf.
GA's in Engineering Systems: Innovations and Applications, Sheffield,
UK., 1995, pp. 250-255

[110] K. S. Tang, K. F. Man, and D. W. Gu, “Structured genetic algorithm
for robust H .. control system design,” JEEE Trans, Ind. Electron., this
issue, pp. 575-582.

[111) Y. C. Tang, Tolkien Reference Manual, Dept, Comput. Sci,, Chinese
Univ. Hong Kong, 1994

[112] R. Tanse, “Distributed genetic algorithms,” in Proc. 3rd. Int. Conf.
Genetic Algorithms, 1989, pp. 434-439,

[113] B. Thomas, Users Guide for GENEsYs, System Analysis Rescarch
Group, Dept. Comput. Sci., Univ. Dortmund, 1992,

[114] P. W. M. Tsang, "A genetic algorithm for affine invariant object shape
recognition,” in /st IEE/IEEE Int. Conf. GA's in Engineering Systems:
Innovations and Applications, Sheffield, U K., 1995, pp. 293.-298

[115] P. Wang and D. P. Kowk, “Optimal design of pid process controllers
based on genetic algorithms,” Contr. Eng. Practice, vol. 2, no, 4, pp.
641-648, 1994,

[116] M. S. White and S. J. Flockton, “A comparative study of natural algo-
rithms for adaptive IR filtering,” in Workshop on Natural Algorithms in
Signal Processing, Chelmsford, Essex, Nov. 1993, pp. 22/1-22/8,

[117) D. Whitkey, “The GENITOR algorithm and selection pressure: why
rank-based allocation of reproductive trials is best,” in Proc. 3rd Int.
Conf. Genetic Algorithms, J. D. Schaffer, Ed., 1989, pp. 116-121.

, “A genetic algorithm tutorial,” Dept. Comput. Sci, Colorado
State Univ., Tech. Rep. CS-93-103, Nov. 1993,

[119] B. Widrow, D. E. Rumelhart, and M. A. Lehr, “Neural networks:
Applications in industry, business, and science,” Communicat. ACM,
vol. 37, no. 3, pp. 93-105, Mar. 1994

[120] D. Wienke, C. Lucasius, and G. Kateman, “Multicriteria target vector
optimization of analytical procedures using a genetic algorithm. Part
I. Theory, numencal simulations, and application 1o atomic emission
spectroscopy.”™ Analytica Chimica Acta, vol, 265, no. 2, pp. 211-225,
1992

[121] P. B. Wilson and M. D. Macleod, “Low implementation cost IR
digital filter design using genetic algorithms,” in Workshop on Natural
Algorithms in Signal Processing, Chelmsford, Essex, Nov, 1993, pp.
4/1-458

[122] A. H. Wright, “Genetic algorithms for real parameter optimization,”
Foundations of Genetic Algorithms, J. E. Rawlins, Ed. San Matco,
CA: Morgan Kaufmann, 1991, pp. 205-218

[123] T. Yamada and R. Nakano, “A genetic algorithm applicable to large
scale job-shop problems.” Parallel Problem Solving From Nature, 2, pp
281-290, 1992.

18]

K. F. Man (M’91), for 2 photograph and biography, sce this issue, p. 518.

asic Concepts

heory /
pothesis

Structure

Modification

Applications

Conclusions

FIRST IN CHANGE



Intro.

- CHEE9| HES0| Appendix2t referenceS HIEFS 2 24 C|0f Q&L CY ,
(AEMIBIA Cf 2ope T A2 LIRO| QICiH #152 2| HE oy =22 AHEAIN 22 2 2L i

- Genetic Algorithm (GA)0|| CHst AElAol S E1}
Neural Network2te| Hlu/EM = FSele=z BA|H =5 A Z5L(C

- 28 S0 d==t2 U LE2} THo{=0| A A E & USH T
(Ofsf7t = 2| G&= UEO0] AL Bi= Aol FA[H EL|TH)

- 19904l =20|C} 2L CiA 2|4l 7|=0]| st 28 (Application)0] &8 £ Q&LC}H 5
(GAL| oA Z2E L0 Choll T AfMIS] Z1L AL Applications of GAZ AAA[H FLLH) 5

WAMNiST FIRST IN CHANGE



Basic Concepts

IIIIIIIIIIIII



Basic Concepts

Crossover (ulz}) Mutation (St 0|)

oooooooooo

Basic Concepts

Duplicated chromosomes

Exchange gmébc matenal Recombinant chromatids

Original Chromosome | (O | 1 O | O

¢

New Chromosome | (DEDO | @ | O

Fig. 2. Bt muotation on the fourth bit.

Fig. 1. Example of ong-point crossover,

Crossover rate (p,.) Mutation rate (p.,)
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Basic Concepts

STEP 4: Parent Selection

First Population Objective Value z = f(x,y)
1100110110101000 3481746
0101010110110101 3.668023

- 1000010100110110 6.261380
_> 1101011111001100 12.864222

Population size = 4
X(8bit), Y(8bit) > 16bit

STEP 3: MUTATION

1101010100110110

\

1111010100100110

z = 8.044649

1000011111001100

N

1000011111001100

z = 6.092550

STEP 20 CROSSOVER

1101011111001100

1000010100110110

crossover point

STEP 4 Reinsertion

%
...9

— |10000

Basic Concepts

1101010100110110

11111001100

Second Population

Objective Value z = f(x,y)

1111010100100110 8.044649
1000011111001100 6.092550
1000010100110110 6.261380
1101011111001100 12.864222

\%\—\‘—a

-E-I-J-[d-utﬁlmu::-}. S
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Theory & Hypothesis

Schema Theory

low-order, above-average schemata receive exponentially increasing
trials in subsequent generations of a genetic algorithm.

Lr2 20| W HO| &S| schematae
TFAA dae|Fe| == M|chof| M
lsta+A 28 S7t6t= Al =5 9h=C}!

SC h ema: 7 sets of strings (encoded form of the chromosome) that have one or more features in common.

512/0] i3t H2E 7431 QU= BAE

Building Block Hypothesis

A genetic algorithm seeks near-optimal performance
through the juxtaposition of low -order, high-performance
schemata, called the building block

S4 2dn2|=2 buijlding blockO|2t 5=
Lr2 29| =2 A== 712 schematall H2| & Sl
z|A0j| 7t des= 2=

Theory /
Hypothesis
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Structure Modification

1.

2.

. Reordering / inversion

Chromosome Representation

Objective and fitness value

. Crossover operations

Structure
Modification

. Reinsertion
. Probability rates setting
. Parallel GA

. Structed GA

FIRST IN CHANGE



Structure Modification

1. Chromosome Representation st Fopulation
1100110110101000
0101010110110101
5= o= BT E———
- HE9S| FHA= O|2IG|0|EH = Hetst] A otCt, 1000010100110110
1101011111001100 [
- HO 220l 218 V|8 FHA Hole AR JHsotA| Bt
A BAE GAV L8 A0 HtEA| =2 Z1F= AME061A| 22 4= QUL
. Structure
- Cpor FHAF Hod LAIO| EANoHA| B Y5 2| A3t A0 Chsl O & L, .~ Modification
2= FAIHAZZ 20 2elie 4= UL !

Ex) Order-based representation, Embedded list
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2. Objective and fitness value

- S0 RHAHHO|R) S E/tok= BlAHHS= E+42 T

- GMAS YO AFRSHD MO SO TS HER A2} Ei HEHO! 2t Ak
- Linear Scaling - Power Law Scaling structure
Modification
' K
fi=a-O0;+b fi = O;

fi fitness value (J; : Objective value of chromosome i
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Structure Modification

4. Crossover operations

- WMz 20| ot e eIt QICH (Multipoint Crossover)

- Crossover Masks Sofl 12422 SJA[FO| toliAl wats dig o ULt

- N - Structure
Ex) 20401 W) A A9 74 building block E& A= Modification

0007
Parents<

/ \‘. E‘

Mask 0001110111000111

/|

- T A0 Cfet = By EEo|C :

Parents Offspring OffSprmg<

Fig. 7. Example of multipoint crossover, (m = 3)

Vi V. U

Fig. 8. Example of uniform crossover.
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Structure Modification

8. Parallel GA (Global)

- Global GAE dA| Q415 tH HA AL S22 2ot}

- S 0Ee TS T2 MA = 240 22| BFEN A e 7S 6t
_ _|_|- = O ot
Master-Slave Z2A|E 7|8t 2 6l f_. _ Structure
(Master?} 2F4E 2 2|5l= S0t Slave= C{7|5}|0F StCH= CFAO| Q\CH E . g .
- . Modification

Slave 1 Slave 2 Slavek

Recombination Recombination s o ® Recombination
Mutation Mutation Mutation

Function Evaluation Function Evaluation Function Evaluaton

Fig. 9. Global GA.
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8. Parallel GA (Migration)

- Migration GA= 7HA|#S 042 512 7HA|F2 2 Li=C.
(2t FHA| 2 HE o] HAI Che| 2 z{2|ZIC})

- 519 JHHI2 242 OS2 T2 EHAUBICE (0|S YAIO| 2 Xt0|7} UTh

Structure
Modification

Fig. 10. Ring migration topology. o
Fig. 11. Neighborhood migration topology. Fie. 12,
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Diffusion GA.
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9. Structed GA
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Applications

1. Parameter and system identification
2. Control

3. Robotics
4. Pattern / Speech recognition
5. Engineering Designs

6. Planning and scheduling

7. Classifier system

Applications
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